Suppose U and W are both four-dimensional subspaces of \mathbb{C}^6 . Prove that there exist two vectors in $U \cap W$ such that neither of these vectors is a scalar multiple of the other.

$$dim(u) = dim(w) = 4$$

$$dim(U+w) = dim(U) + dim(w) - dim(U/w)$$

 $dim(U+w) = 8 - dim(U/w) - (1)$

Since, (U+W) is subspace of
$$C^6$$
. Then, $dim(U+w) \leq dim(C^6) = 6 - 2$

By Dand D, 2 dim (UNW).

Therefore, We can find two independent vectors in UNV such that neither of these vectors is a scaler multiple of other

Suppose that U and W are subspaces of \mathbb{R}^8 such that dim U=3, dim W=5, and $U + W = \mathbb{R}^8$. Prove that $\mathbb{R}^8 = U \oplus W$.

We know that,

$$dim(U+W) = dim(u) + dim(w) - dim(u \cap W)$$

$$dim(IR) = 3 = 5 + 3 - dim(u \cap W)$$

O = dim(UNW)
Thus (UNW) = {0}. Therefore, R8 = UAW

Suppose U and W are both five-dimensional subspaces of \mathbb{R}^9 . Prove that $U \cap W \neq \{0\}$.
$\lim(U) = \dim(W) = 5$
Assume the contray UNW = {0}. Then dim(UNW)=0 Since U, W are subspaces of IR9, them U+Wis
Since U.W are subspaces of IR9. them Utwis
a subspace of 129. Then
$\dim(U+W) \leq \dim(IR^q) = q - \Re$
9 > dim(U+W) = dim(U) +dim(W) +dim(UNW)
= 5 + 5 + 0
Thus, 9 > 10
This is a contradiction. Thus our hypothesis is wrong
Therefore UNW = {0}

Suppose V is a ten-dimensional vector space and V_1, V_2, V_3 are subspaces of V with dim $V_1 = \dim V_2 = \dim V_3 = 7$. Prove that $V_1 \cap V_2 \cap V_3 \neq \{0\}$.

Suppose that \$dim(V)=10.
12 gasad det V, V2, V3 are subspaces of V Bage 3
Signed Reasons. Write the number of the question in this column. With $dim(V_1) = dim(V_2) = dim(V_3) = 7$
dim (U+V) = dim(U) + dim(U) - dim(U)V)
By 2.43,
$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$
Then, $\dim(V_1 \cap V_2) = 7 + 7 - 10 = 4 - 1$
Furthur, by 2.43,
$d_{\mathbb{M}}(V_1 \cap V_2) + V_3) = \dim(V_1 \cap V_2) + \dim(V_3)$
$+ dim((V_1 \cap V_2) \cap V_3)$

re subspaced o V2)+V2 is a subspaces of

15	Suppo	se V i	is fini	te-dir	nensi	onal	and <i>V</i>	$V_1, V_2,$	V_3 and	re sul	ospac	es of	V wi	th
	$\dim V_1$	+ din	n V_2 +	- dim	$V_3 >$	2 dim	V. Pr	ove t	hat V_1	$\cap V_2$	$rac{1}{2} \cap V_3$	$4 \neq \{0$)}.	
														L
														H
														L
														Γ
														H
														L
														Γ
														H
														H
														L
														İ
														L

